Конвертер величин

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

Задачи на количество теплоты с решениями

Формулы, используемые на уроках «Задачи на количество теплоты,
удельную теплоемкость».

1 г = 0,001 кг;     1 т = 1000 кг;    1 кДж = 1000 Дж;    1 МДж = 1000000 Дж

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела — и котёл, и вода — будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С — 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

Задача № 2.
 Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Задача № 3.
 Стальная деталь массой 3 кг нагрелась от 25 до 45 °С. Какое количество теплоты было израсходовано?

Задача № 4.
 В сосуде содержится 3 л воды при температуре 20 °С. Сколько воды при температуре 45 °С надо добавить в сосуд, чтобы в нём установилась температура 30 °С? Необходимый свободный объём в сосуде имеется. Теплообменом с окружающей средой пренебречь

Задача № 5.
 На сколько градусов изменилась температура чугунной детали массой 12 кг, если при остывании она отдала 648000 Дж теплоты?

Задача № 6.
 По графику определите удельную теплоёмкость образца, если его масса 50 г.

Задача № 7.
 Для нагревания медного бруска массой 3 кг от 20 до 30 °С потребовалось 12000 Дж теплоты. Какова удельная теплоемкость меди?

Задача № 8.
 Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

Задача № 9.
 Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см3; стали объемом 0,5 м3; латуни массой 0,2 т?

Задача № 10.
 Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

Задача № 11.
 а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от 0 до 30 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух? б) В порожнем закрытом металлическом баке вместимостью 60 м3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг-°С.)

Задача № 12.
  ОГЭ
 Металлический цилиндр массой m = 60 г нагрели в кипятке до температуры t = 100 °С и опустили в воду, масса которой mв = 300 г, а температура tв = 24 °С. Температура воды и цилиндра стала равной Θ = 27 °С. Найти удельную теплоёмкость металла, из которого изготовлен цилиндр. Удельная теплоёмкость воды св = 4200 Дж/(кг К).

Задача № 13.
 В теплоизолированном сосуде сначала смешивают три порции воды 100 г, 200 г и 300 г с начальными температурами 20 °C, 70 °C и 50 °C соответственно. После установления теплового равновесия в сосуд добавляют новую порцию воды массой 400 г при температуре 20 °C. Определите конечную температуру в сосуде. Ответ дайте в °C, округлив до целого числа. Теплоёмкостью калориметра пренебрегите.

Решение.

Ответ: 39 °С.

Задача № 14. (повышенной сложности)
 Стальной шарик радиусом 5 см, нагретый до температуры 500 ˚С, положили на лед, температура которого 0 ˚С. На какую глубину погрузится шарик в лед? (Считать, что шарик погрузился в лед полностью. Теплопроводностью шарика и нагреванием воды пренебречь.)

Дано: R = 0,05 м;   t1 = 500 ˚С;   t2 = 0 ˚С;
ρ1 (плотность стали) = 7800 кг/м3.;
ρ2 (плотность льда) = 900 кг/м3.
c (удельная теплоемкость стали) = 460 Дж/кг •˚С,
λ (удельная теплота плавления льда) = 3,3 • 105 Дж/кг,

Найти: h – ?

Конспект урока «Задачи на количество теплоты».

Посмотреть конспект урока по теме «Количество теплоты. Удельная теплоемкость»

Следующая тема: «ЗАДАЧИ на сгорание топлива с решениями».

Мощность в спорте

Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

Динамометры

Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение

Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм

Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Автор статьи: Kateryna Yuri

Определение теплового эффекта химической реакции

В процессе химической реакции связи в исходных веществах разрываются и образуются новые связи, благодаря чему образуются новые вещества — продукты реакции. Разрыв связи протекает с поглощением энергии, а образование — с выделением, то есть химические реакции сопровождаются энергетическими эффектами.

Как правило, энергия выделяется или поглощается в виде теплоты, поэтому мы говорим, что протекание химической реакции сопровождается тепловым эффектом.

Тепловой эффект химической реакции — это количество теплоты, которое поглощается или выделяется в результате протекания химической реакции.

Если исходные вещества были менее устойчивыми (поглощается небольшое количество энергии), а образуются устойчивые (выделяется большое количество энергии), то в результате химической реакции выделяется тепловой эффект.

И наоборот, образование более устойчивых веществ из менее устойчивых сопровождается поглощением теплоты.

Рассмотрим эти процессы на рисунке:

В зависимости от того, выделяется или поглощается теплота, различают два типа химических реакций: экзотермические и эндотермические.

Практикующий детский психолог Екатерина Мурашова
Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Получить

Кратные и дольные единицы

В соответствии с полным официальным описанием СИ, содержащемся в действующей редакции Брошюры СИ (фр. Brochure SI

), опубликованной Международным бюро мер и весов (МБМВ), десятичные кратные и дольные единицы джоуля образуются с помощью стандартных приставок СИ. «Положение о единицах величин, допускаемых к применению в Российской Федерации», принятое Правительством Российской Федерации, предусматривает использование в тех же приставок.

Кратные Дольные
величина название обозначение величина название обозначение
101 Дж декаджоуль даДж daJ 10−1 Дж дециджоуль дДж dJ
102 Дж гектоджоуль гДж hJ 10−2 Дж сантиджоуль сДж cJ
103 Дж килоджоуль кДж kJ 10−3 Дж миллиджоуль мДж mJ
106 Дж мегаджоуль МДж MJ 10−6 Дж микроджоуль мкДж µJ
109 Дж гигаджоуль ГДж GJ 10−9 Дж наноджоуль нДж nJ
1012 Дж тераджоуль ТДж TJ 10−12 Дж пикоджоуль пДж pJ
1015 Дж петаджоуль ПДж PJ 10−15 Дж фемтоджоуль фДж fJ
1018 Дж эксаджоуль ЭДж EJ 10−18 Дж аттоджоуль аДж aJ
1021 Дж зеттаджоуль ЗДж ZJ 10−21 Дж зептоджоуль зДж zJ
1024 Дж иоттаджоуль ИДж YJ 10−24 Дж иоктоджоуль иДж yJ
применять не рекомендуется

Работа и мощность постоянного тока. Закон Джоуля-Ленца

Подробности Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

= 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

— отношение работы тока за время t к этому интервалу времени.

В системе СИ:

Следующая страница «Электрический ток в металлах. Сверхпроводимость»

Назад в раздел «10-11 класс»

Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда — Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля — Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков — Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов — Электроемкость. Конденсаторы. Энергия заряженного конденсатора — Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление — Работа и мощность тока

Закон Джоуля-Ленца: задачи с решением

Для решения любой физической задачи существует алгоритм: сначала записываются все известные данные, затем определяются величины, которые нужно найти. Подробнее о решении физических задач читайте в нашей памятке для студентов. Также советуем держать под рукой формулы, это существенно облегчит процесс решения.

Кстати, если вы интересуетесь задачами на закон Джоуля-Ленца, вам также может быть полезно ознакомиться с задачами на мощность тока.

Задача на закон Джоуля-Ленца №1

Условие

Какое количество теплоты выделяет за 5 минут нагреватель электрочайника, если его сопротивление равно 30 Ом, а сила тока в цепи 1,5 А?

Решение

Это простейшая задача на закон Джоуля-Ленца для участка цепи. Запишем сам закон:

Q=I2Rt

Подставив значения из условия в формулу, найдем:

Q=1,52·30·300=20250 Дж

Ответ: 20,25 кДж.

Задача на закон Джоуля-Ленца №2

Условие

Какое количество теплоты выделит за 40 минут спираль электроплитки, если сила тока в цепи 3 А, а напряжение 220 В?

Решение

Эта также простейшая задача на закон Джоуля-Ленца, но, в отличие от первой задачи, при ее решении используется другая формулировка закона. Сначала запишем закон Джоуля-Ленца:

Q=I2Rt

Теперь перепишем его с учетом закона Ома:

I=URR=UIQ=I2UIt=IUt

Осталось подставить значения и вычислить:

Q=3·220·2400=1,584 МДж

Ответ: 1,584 МДж.

Задача на закон Джоуля-Ленца №3

Условие

Сколько минут ток шел по проводнику сопротивлением 25 Ом, если при силе тока 1 А проводник вылелил 6 кДж теплоты.

Решение

Запишем закон Джоуля-Ленца и выразим время:

Q=I2Rtt=QI2R

Найдем:

t=600012·25=240 c=4 мин

Ответ: 4 минуты.

При расчетах не забывайте переводить все величины из условия в систему СИ.

Задача на закон Джоуля-Ленца №4

Условие

Электрическая плитка при силе тока 4 А за 20 минут потребляет 1000 кДж энергии. Рассчитайте сопротивление плитки.

Решение

Выразим сопротивление из закона Джоуля-Ленца:

Q=I2RtR=QI2t

Подставим значения и вычислим:

R=1000·10316·1200=52 Ом

Ответ: 52 Ом.

Задача на закон Джоуля-Ленца №5

Условие

По проводнику с сопротивлением 6 Ом пропускали постоянный ток в течение 9 c. Какое количество теплоты выделилось в проводнике за это время, если через его сечение прошел заряд 3 Кл?

Решение

Заряд можно определить, зная время и силу тока. А зная заряд и врямя, за которое он прошел по проводнику, найдем силу тока:

I=qt

Запишем закон Джоуля-Ленца для количества теплоты:

Q=I2RtQ=q2t2Rt=q2Rt

Подставим значения и вычислим:

Q=32·69=6 Дж

Ответ: 6 Дж.

Примечания

  1. Производные единицы Беккерель · Ватт · Вебер · Вольт · Генри · Герц · Градус Цельсия · Грей · Джоуль · Зиверт · Катал · Кулон · Люкс · Люмен · Ньютон · Ньютон-метр · · Паскаль · Радиан · Сименс · Стерадиан · Тесла · Фарад
    Принятые для использования с СИ Ангстрем · Астрономическая единица · Гектар · Градус дуги (Минута дуги, Секунда дуги) · Дальтон (Атомная единица массы) · Децибел · Литр · Непер · Сутки (Час, Минута) · Тонна · Электронвольт Атомная система единиц · Естественная система единиц
    См. также Приставки СИ · Система физических величин · Преобразование единиц · Новые определения СИ · История метрической системы
    Книга:СИ · Категория:СИ
    В другом языковом разделе есть более полная статья Joule (нем.) Вы можете помочь проекту, расширив текущую статью с помощью перевода.

Мощность пневматического пистолета, равная 7,5 Дж — разрешенная граница

Многих интересуют модели с таким показателем дульной энергии – их и оформлять не нужно, и сила выстрела у них внушительная. Заметим, что часто добиться увеличения мощности можно с помощью небольшого апгрейда (проще всего это сделать с пневматами, имеющими обозначение F, так как производитель изначально заложил в них больше возможностей). Кроме того, мощность семь с половиной джоуля имеет оружие, стреляющее патронами флобера, которое в Украине продается свободно, но в России запрещено. Далее будем говорить о пистолетах, дульная энергия которых максимально приближена к разрешенной границе. Представляем несколько популярных моделей.

Аникс А-3000 LB Скиф

Пневматический пистолет Аникс А-3000 LB Скиф

Пневматический газобаллонный пистолет калибра четыре с половиной миллиметра, производящийся российской , имеет достаточно длинный ствол, являющийся имитатором глушителя. Это положительным образом сказывается на дульной энергии (указывается ее значение до 7,5 джоуля). Его корпус выполнен из качественного стеклопластика (от фирмы Дюпон). Предохранитель, курок, прицел и затвор – металлические. Ствол подвижен, имеет 6 прямоугольных нарезов и длину 11,65 см. Масса изделия – 785 г (без магазина).

Применяется предохранитель флажкового типа, УСМ – двойного действия.

Пистолет ИЖ МР-651-09 К

Пневматический пистолет ИЖ МР-651К

Это изделие калибра четыре с половиной миллиметра от знаменитой компании из Ижевска являет собой весьма интересный экземпляр. Ведь благодаря модульной конструкции он может превратиться и в пистолет-пулемет, и в винтовку с коротким прикладом, и в пистолет с эргономичным дизайном. Корпус – литой, выполнен из алюминиевого сплава. Рукоятка, магазин и планка прицела – пластиковые, но весьма прочные. Ствол стальной, длиной 14,8 см. Вес устройства – от 0,7 до 1,5 кг (в зависимости от сборки).

Стрельба идет на энергии баллончика с СО2 (8 или 12 г). Можно стрелять шариками 4,5 мм (отметим, что их в магазин поместится целых 23 штуки) или пулями до 7 мм длиной (которых в магазине будет 8 штук). Для этого в комплекте идут два разных магазина. Скорость летящего заряда – 120 метров в секунду. Дульная энергия заявлена до 7,5 джоуля. Стоимость изделия – 3200 рублей.

ИЖ МР-661К «Дрозд»

Пневматический пистолет ИЖ МР-661К «Дрозд»

Эту газобаллонную модель, калибр которой равняется 4,5 мм, именуют пистолетом-автоматом – уж очень необычный дизайн она имеет. Устройство может работать на баллончиках с углекислым газом весом 8 или 12 г. Корпус его изготовлен из прочного полиамида, длинный (18,5 см) ствол с шестью нарезами сделан из стали. Вес пистолета – 1400 г.

Какова ценность 104 калорий в джоулях Дж?

– Теперь, подставив значение одной калорийности в 104 калории, мы получим количество джоулей в 104 калориях. 104 калории = (104) (4.18) = 434.72 джоулей. – Следовательно, количество джоулей на 104 калории составляет 434.72 джоуля.

Почему килокалории называют калориями?

Чтобы избежать путаницы между большими и малыми калориями, считается, что термин килокалория — приставка «кило», означающая 1,000 — был создан для обозначения большой калорийности ( 1 ). … Калории также могут быть выражены в килоджоулях (кДж). Одна калория (ккал) равна 4.18 кДж или 4,184 джоуля (Дж) (1).

Достаточно ли 5000 кДж в день? Низкоэнергетические диеты (LED)

Светодиоды предписывают ежедневное потребление энергии от 4,200 до 5,000 кДж в сутки. Обычно это список определенных блюд и закусок, за которыми вы внимательно следите, чтобы убедиться, что ваше потребление килоджоулей соответствует дневной цели.

Сколько килоджоулей в яйце? Яйцо среднего размера из 700-граммовой коробки содержит 310 килоджоулей. Однако точное количество килоджоулей зависит от размера яйца. Яйцо чуть меньшего размера из 600-граммовой коробки содержит 268 килоджоулей.

Примеры

  • Средняя энергия теплового движения, приходящаяся на одну степень свободы молекул при температуре 1 : 0,690·10−23 Дж.
  • Энергия фотона красного видимого света: 2,61·10−19 Дж.
  • Энергия Ферми металлического золота: 8,8·10−19 Дж.
  • Атомная единица энергии (энергия Хартри), E_h = m_\mathrm{e} c^2\alpha^2: 4.360·10−18 Дж.
  • Дульная энергия пули при выстреле из АКМ: 2,3·103 Дж.
  • Энергия, необходимая для нагрева 1 литра воды от 20 до 100 °C: 3,35·105 Дж.
  • Энергия, выделяемая при взрыве 1 тонны тринитротолуола (тротиловый эквивалент): 4,184·109 Дж.
  • Энергия, выделенная при атомной бомбардировке Хиросимы: около 6·1013 Дж.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Лампа накаливания мощностью 60 ватт

Практика

Рассмотрим несколько термохимических расчетов для типовых заданий.

Задача 1

Рассчитайте количество теплоты, выделившейся в результате реакции образования метана, термохимическое уравнение которой —

C(тв) + 2H2 (г) = CH4 (г) + 76 кДж,

из: а) 0,3 моля углерода; б) 2,4 г углерода; в) 2,24 л водорода.

Решение.

Важно помнить, что количество теплоты, которая выделяется в результате реакции, пропорционально количеству вещества, вступившего в реакцию. а) Из термохимического уравнения видно, что при взаимодействии 1 моля С выделяется 76 кДж, тогда при взаимодействии 0,3 моля С выделяется x кДж

а) Из термохимического уравнения видно, что при взаимодействии 1 моля С выделяется 76 кДж, тогда при взаимодействии 0,3 моля С выделяется x кДж.

Составим уравнение и решим его:

1 моль × х = 76 кДж × 0,3 моля;

.

б) Для начала найдем количество вещества прореагировавшего углерода. Для этого разделим его массу m на молярную массу M:

.

Молярная масса углерода равна 12 г/моль (значение из таблицы Менделеева).

Тогда .

В соответствии с термохимическим уравнением при взаимодействии 1 моля С выделяется 76 кДж, тогда при взаимодействии 0,2 моля выделяется х кДж.

Данной пропорции соответствует уравнение:

1 моль × х = 76 кДж × 0,2 моля;

.

в) Для начала найдем количество вещества вступившего в реакцию водорода. Для этого разделим его объем V на молярный объем Vm:

.

Молярный объем любого вещества равен 22,4 л/моль.

Тогда .

В соответствии с термохимическим уравнением при взаимодействии 2 молей H выделяется 76 кДж, тогда при взаимодействии 0,1 моля выделяется х кДж.

Данной пропорции соответствует уравнение:

1 моль × х = 76 кДж × 0,1 моля;

.

Задача 2

В результате реакции, термохимическое уравнение которой —

2H2 (г) + O2 (г) = 2H2O (г) + 484 кДж,

выделилось 1 360 кДж. Вычислите: а) объем (н. у.) вступившего в реакцию кислорода; б) массу образовавшейся воды.

Решение.

а) В соответствии с термохимическим уравнением при взаимодействии
1 моля кислорода выделяется 484 кДж, тогда при взаимодействии
х молей кислорода выделяется 1 360 кДж.

Этой пропорции соответствует уравнение:

1 моль × 1 360 кДж = 484 кДж × х молей;

.

Найдем объем вступившего в реакцию кислорода, воспользовавшись формулой:

V = n(H) × Vm, где Vm — молярный объем;

V(H) = 2,81 моля × 22,4 л/моль = 62,95 л.

б) В соответствии с термохимическим уравнением при взаимодействии
2 молей воды выделяется 484 кДж, тогда при взаимодействии
х молей кислорода выделяется 1 360 кДж.

Этой пропорции соответствует уравнение:

2 моля × 1 360 кДж = 484 кДж × х молей;

.

Найдем объем вступившего в реакцию кислорода, воспользовавшись формулой:

m(H2O) = n(H2O) × M(H2O), где M — молярная масса;

M(H2O) = 1 × 2 + 16 × 1 = 18 г/моль;

m(H2O) = 5,62 моля × 18 г/моль = 101,16 г.

Еще больше задач, да еще и в интерактивном формате — на онлайн-курсах по химии в школе Skysmart.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Клуб фитнеса и красоты
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: